ποΈPraktikum 2
Klasifikasi Berita dengan Perceptron
Deskripsi
Langkah 1 - Import Library
from sklearn.datasets import fetch_20newsgroups # download dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import Perceptron
from sklearn.metrics import f1_score, classification_reportLangkah 2 - Pilih Label dan Split Data
categories = ['rec.sport.hockey', 'rec.sport.baseball', 'rec.autos']
newsgroups_train = fetch_20newsgroups(subset='train', categories=categories, remove=('headers', 'footers', 'quotes'))
newsgroups_test = fetch_20newsgroups(subset='test', categories=categories, remove=('headers', 'footers', 'quotes'))Langkah 3 - Ekstrak Fitur dan Buat Model Perceptron
# Ekstrak Fitur
vectorizer = TfidfVectorizer()
# Fit fitur
X_train = vectorizer.fit_transform(newsgroups_train.data)
X_test = vectorizer.transform(newsgroups_test.data)
# Fit Model
clf = Perceptron(random_state=11)
clf.fit(X_train, newsgroups_train.target)
# Prediksi
predictions = clf.predict(X_test)
print(classification_report(newsgroups_test.target, predictions))Penjelasan
Last updated
Was this helpful?