πΎPraktikum 1
Klasifikasi Iris dengan Perceptron
Deskripsi
Langkah 1 - Import Library
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as snsLangkah 2 - Load Data dan Visualisasi
df = pd.read_csv('iris.csv', header=None)
setosa = df[df[4] == 'Iris-setosa']
versicolor = df[df[4] == 'Iris-versicolor']
virginica = df[df[4] == 'Iris-virginica']
a, b = 0, 3
plt.scatter(setosa[a], setosa[b], color='red', marker='o', label='setosa')
plt.scatter(versicolor[a], versicolor[b], color='blue', marker='x', label='versicolor')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Length')
plt.legend(loc='upper left')
plt.grid()
plt.show()
Langkah 3 - Membuat Kelas Perceptron
Langkah 4 - Pilih Data dan Encoding Label
Langkah 5 - Fitting Model
Langkah 6 - Visualisasi Nilai Error Per Epoch

Langkah 7 - Visualiasasi Decision Boundary

Last updated
Was this helpful?