Praktikum 3
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
# Contoh dataset (buat dummy data)
data = pd.DataFrame({
'luas': [50, 60, 70, 80, 90],
'harga': [500, 600, 700, 800, 900]
})
X = data[['luas']]
y = data[['harga']]
# Normalisasi
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y)
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Model
model = tf.keras.Sequential([
tf.keras.layers.Dense(10, activation='relu', input_shape=(1,)),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X_train, y_train, epochs=100)
# Evaluasi
print("Prediksi:", model.predict(X_test))Last updated