Praktikum 2
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
# Load dataset
iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1)
# One-hot encoding
encoder = OneHotEncoder(sparse=False)
y = encoder.fit_transform(y)
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Bangun model
model = tf.keras.Sequential([
tf.keras.layers.Dense(10, activation='relu', input_shape=(4,)),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')
])
# Kompilasi
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Latih model
model.fit(X_train, y_train, epochs=50, batch_size=8)
# Evaluasi
loss, acc = model.evaluate(X_test, y_test)
print(f"Akurasi: {acc}")Last updated